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The Quantum Dynamics of an Excess Proton in Water 
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Abstract 

The quantum dynamics and energetics of an excess proton in water have 

been studied computationally. Comparison of a quantum mechanical treat- 

ment of the transferring proton and the water solvent is made with a classical 

treatment of the same system. The exchange of the proton between two water 

molecules is found to be an activationless quantum process. Analysis of the 

microscopic structure of the solvent around the proton transfer complex is 

also carried out, and the quantum IR spectrum of the transferring proton is 

calculated and analyzed in terms of Zundel polarization. The Grötthus mech- 

anism for proton migration in water is also examined within the context of the 

model. Grötthus behavior is suggested to depend critcally on the dynamics 

of water molecules in the second solvation shell of the H50 J complex, as well 

as the inward fluctuations of the oxygen-oxygen distance of water molecules 

that hydrogen bond to the H50^" complex in the first solvation shell. The 

quantum effects on the nuclear dynamics are found to be significant. 

m 
r'""i 

* Present Address:  Department of Chemistry and Biochemistry, University of Texas at Austin, ^ 

Austin, TX, 78712-1167 
By _ 
Distribution/ 

4- 

Availability Codes 



I. INTRODUCTION 

Proton transfer in water has been the focus of considerable theoretical and experimental 

investigation during this century. A lone proton does not exist in water but instead forms a 

weak chemical bond with a water molecule to give a hydronium ( H30
+ ) ion. The mobility 

of the hydronium itself is anomalously high, being five to seven times that of similarly sized 

cations [1]. The explanation of this unusual fact is thought to be that the migration of an 

excess proton in water could occur via a mechanism of chemical, rather than hydrodynamic 

or Stokes' law, diffusion. The positive charge might therefore shuttle through water via 

an exchange of chemical and hydrogen bonds (as illustrated in Fig. 1), hence the charge 

migration could occur via a process of structural diffusion, [2] also called the Grötthus 

mechanism. 

A classic variant on this model suggested by Bockris [3,4] is one in which the rate deter- 

mining step is the molecular reorientation of a water adjacent to the H30
+ in order to form 

a hydrogen bond with the H30
+ ion. One drawback of this theory is that the thermal rate 

of reorientation of water molecules in pure water is insufficiently fast to account for the rate 

of proton transfer [3]. However, it can be postulated that the electric field of the hydronium 

enhances the rate of molecular reorientation. This process is known as "field assisted" re- 

orientation and is could be sufficiently fast to account for the rate of proton transfer [4]. On 

the other hand, it has been pointed out [5-7] that the activation energy necessary to transfer 

a proton to an acceptor water that is not hydrogen bonded to other water molecules in the 

second solvation shell (which is a consequence of the field reorientation mechanism) exceeds 

the experimentally determined [8] activation energy of proton transfer. Furthermore, the 

theory as originally put forward [3,4] would seem to require the presence of a second hydro- 

nium to perturb the local structure around the first hydronium (see also [9]). In addition, 

the mobilities of H+ and OH- are smaller [10] in ice than in water which would seem to 

contradict a field "assisted" reorientation mechanism. Hence, it seems that the rate limit- 

ing step for proton transfer might not involve reorientation dynamics in the first solvation 



shell but instead could involve dynamics of water molecules in the second solvation shell of 

the H30
+ ion. In this picture, the formation of hydrogen bonds in the second solvation 

shell with a water molecule in the first solvation shell is a precursor to a Grötthus-type 

proton transfer event [7,11-13]. Also critical to a successful proton transfer event could be 

the inward fluctuation of the oxygen-oxygen distance between the hydronium ion and the 

acceptor water molecule in the first solvation shell [14,15] since the barrier to proton transfer 

increases rapidly as the oxygen-oxygen distance increases [16-20]. Hence, proton transfer 

must be a concerted process depending on fluctuations in both the oxygen-oxygen distance 

between donor and acceptor as well as the nearby solvent dynamics. 

The proton due to its small mass can give rise to quantum effects in many chemical 

reactions (see, e.g., Refs. [21-25]). The thermal DeBroglie wavelength of a proton is ~ 1.0 

Ä which is of the same magnitude as the length scale over which proton transfer takes place 

in solution. In addition, the isotope ratios for the rate constants of the chemical reactions 

H20 + H30+ -^ H30+ + H20 and H20 + OH" -^ OH" + H20 have been measured 

[26] to be kf/ k? = 1.6 ± 0.2 and kf/ k° = 2.7 ± 0.4, respectively. The effects are somewhat 

larger than the kinetic isotope effect (mH/mD)1/2 which indicates that quantum effects may 

be present to some degree in both reactions. 

The hydronium species [4,11,12] in water has, on the average, C3v symmetry [27] and 

four water molecules in its first solvation shell [28]. Alternatively, Zundel [29] and others [30] 

have characterized the excess proton as an E5Ot "grouping" in water in which the excess 

proton tunnels rapidly back and forth between the two water molecules through the strong 

hydrogen bond. There is some contention in the literature as to which species predominates 

in the liquid [27]. A recent pioneering ab initio MD study [31] indicates that both viewpoints 

are in essence correct, at least for classical nuclear dynamics. In this study, it was found 

that there is a rapid interconversion between the H90| and H50;j~ structures [32] in solution 

and this interconversion is governed by the dynamics of the local solvent structure in the 

second solvation shell of the  H30
+ ion. 

Ab initio studies of proton transfer in small gas phase water clusters are numerous (see, 



e.g., Refs. [6,7,16-20,33-37]). These studies have characterized the H5Oj complex as having 

a flat and broad potential on which the excess proton moves. The proton potential surface, 

depending on the level of ab initio theory used, is either a single minimum or double minimum 

with a transition state 0.2-0.5 kcal mol-1 higher than the minima. As additional water 

molecules are added, the potential of the proton becomes a single minimum and shifts 

according to the number and positioning of water molecules added to the complex [6,7]. In 

extending this picture to the bulk solvent, it is thought the dynamics of the excess proton 

is governed by solvent fluctuations about the proton transfer complex. The electric field 

of the solvent determines, in part, the potential on which the proton moves and induces 

shifts of the proton from one water molecule to the other. As the proton shifts there is a 

charge redistribution in the proton transfer complex ( H50£ ). This charge redistribution is 

a polarization effect termed "Zundel Polarization" [38-40]. 

There have been few computational investigations of proton transfer in water using 

Molecular Dynamics (MD) or Monte Carlo (MC) methods [41-44] because of the difficulty 

in specifying empirical potential functions that correctly describe proton transfer along a 

series of hydrogen bonded water molecules. The recent "first-principles" studies of this 

and related systems [31,45-48] using ab initio MD [also known as the Car-Parrinello (CP) 

method [49-52]] have taken a significant step forward forward on the problem. The CP 

method is a dynamical density functional theory-based (DFT) method wherein the elec- 

tronic structure is calculated "on the fly" while being adiabatically "slaved" to the evolving 

classical nuclei within the Born-Oppenheimer approximation. The forces on the classical 

nuclei are calculated from the Hellman-Feynman theorem. Hence, chemical processes such 

as bond breaking or formation are treated at an ab initio level rather than using empirical 

methods and/or potentials, representing a substantial advance in MD simulation capabil- 

ity. Unfortunately, the high computational cost has limited the size of systems studied and 

prevented the length of the CP simulations from being more than four to five picoseconds, 

which is often insufficient to obtain well converged values of thermodynamic and dynami- 

cal quantities of interest.  Moreover, the accuracy of gradient-corrected DFT methods for 



describing the proton transfer barrier in the   H50£ complex has been called into question 

[15], and the nuclei are treated as being classical in the CP simulations. 

In the present paper, the dynamical and equilibrium properties of an excess proton 

are studied via classical MD and Feynman path integral methods. The potential energy 

modeling is accomplished using a two state Empirical Valence Bond (EVB) [53,54] model 

for the H5Oj complex in water. The goal of this work is somewhat more modest than 

an explicit simulation of the Grötthus mechanism: the activation free energy as well as the 

dynamics of a proton transferring between a hydronium ion and an acceptor water molecule 

in the first solvation shell are calculated using both the quantum and classical treatments of 

the system. The quantum effects on the proton exchange along the strong hydrogen bond 

between the H30
+ ion and a water molecule are thus examined. From the results presented 

in the following sections, it will be suggested that the transfer of a proton from a hydronium 

ion to a neighboring water molecule is not the rate limiting step in the proton migration 

process. Rather, the likely quantum dynamical mechanism for extended (Grötthus-type) 

proton transfer can be uncovered by examining the structure and dynamics of the solvent 

molecules around the proton transfer complex. To our knowledge, the present work is the 

first quantum simulation of the nuclear dynamics of an excess proton in water. 

The sections of this paper are organized as follows: In Sec. II, the computational methods 

used to simulate the dynamics and energetics of an excess proton in water are outlined. The 

parameterization of the empirical model is then described in Sec. Ill, while the results of the 

quantum and classical simulations are discussed in Sec. IV. Concluding remarks are given 

in Sec. V. 



II. COMPUTATIONAL METHODS 

A. Path Integral Quantum Transition State Theory 

In several previous studies of proton transfer reactions [55-58] the Feynman path integral 

quantum transition state theory (PI-QTST) approach [59-62] has been used to calculate 

the quantum mechanical activation free energy of proton transfer. Both solvent and in- 

tramolecular contributions to the activation free energy of proton transfer are included in 

this approach and the method is applicable [63] in both the adiabatic and nonadiabatic 

limits of proton transfer and where the proton itself becomes classically activated. Impor- 

tantly, the quantum tunneling of the proton is explicitly included in the calculation. [56,63] 

The PI-QTST method makes no approximation or assumptions concerning the form of the 

coupling of the proton transfer coordinate to the solvent and includes the highly nonlinear 

intramolecular and intermolecular couplings between the proton transfer coordinate and the 

other molecular modes of the proton transfer complex. 

In the PI-QTST formulation, [59-61] the fundamental quantum rate constant for a 

quantum activated rate process can be written as 

k =  K^exp(-ßF;)    , (2.1) 
hQR 

where K is a quantum dynamical transmission coefficient [59-61] of order unity, QR is the 

partition function of the entire solute-solvent system in its reactant configuration, kB is 

Boltzmann's constant, T is the temperature, ß is l/kBT, and F* is a quantum mechanical 

excess free energy, given by [59-61] 

F:  =  -knTln Qc(q*)l(ßl^K2ß)1'2]     . (2.2) 

The quantity Qc{q*) in Eq. 2.2 is the path integral centroid density [59-61,64], given in the 

case of a proton transfer reaction by [56,63] 

QM*)   =  J ■ ■ ■ J Pr(r) PRW 5(q* - q0) exp{-S[v(T), R(r)]/ft}    , (2.3) 



where the coordinates r are the Cartesian coordinates of the proton and the coordinates R 

are all other general coordinates of the system, including the solvent. The coordinate q is 

the proton transfer reaction coordinate having a reduced mass p. The reaction coordinate in 

the case of H20-H-OH£ complex is the asymmetric stretch mode involving the transferring 

proton and the two oxygen atoms of the donor and acceptor water molecules, i.e., 

Qasym   =    ^ - T2)      , (2-4) 

where rx and r2 are the distances between the proton (labeled H3 in Fig. 2) and each oxygen 

atom respectively (labeled Oi and 02 in Fig. 2). The centroid variable of the reaction 

coordinate path q{r) is defined as [59-62,64] 

* = rnfdTq{T) (2-5) 

and is constrained to be at the transition state between the reactant and product states of 

the proton [56,63] (which in this case is qasym=0). The action 5[r(r),R(r)] in Eq. (2.3) is 

the imaginary time path integral action functional [64], which depends both on the paths 

of the proton coordinates r(r) and those of the remaining coordinates of the system R(r). 

The specific expression for the action functional in Eq. (2.3) is given by [64] 

5[r(r),R(r)]   =  f* dr j^r(r)2 + £ ^R,(r)2 + V[v(r), R(r)]|    , (2.6) 

where V[T(T),R(T)} is the general many-body potential. All possible quantum paths of 

the coordinates are integrated over in the functional integration in Eq. (2.3). The classical 

approximation for any of the variables R in Eq. (2.3) is to replace the quantum paths R(r) 

by their equivalent classical coordinates. Due to the heavy mass of the oxygen atom, the 

oxygen coordinates were treated classically and so the aforementioned replacement was made 

for their quantum paths. All of the protons (not just the transferring proton) in the solvent 

water molecules and transfer complex were treated quantum mechanically in this study. 

Equation (2.1) can be written in a form particularly well suited for computer simulation 

as 



k = K^expi-ß^F?)    , (2.7) 

where ßu2
c is the curvature of the reaction coordinate centroid free energy around the reactant 

configurations (i.e., for q0 near qr), the prefactor K is approximated to be unity, and the 

difference in centroid free energies between the reactant and transition state is given by 

AFC*  =    - kBTln[Qc(q*)/QM} 

=   -kBTln[Pc(qr-+q*)}    . (2-8) 

A number of simulation methods are suitable for evaluating path integrals and Eq. (2.8). 

In the case of high barriers, one method is to sample the classical coordinates and the path 

integral quasiparticle coordinates using Path Integral Monte Carlo (PIMC) [65-69] or Path 

Integral Molecular Dynamics (PIMD) [70] with umbrella sampling [71]. However, since the 

activation energy of proton transfer is quite low (on the order of kBT) in this particular 

study, the probability Pc(qr -»■ ?*) is readily calculated by binning the trajectory of the 

centroid of the reaction coordinate as it evolves unconstrained (i.e. without the influence of 

an umbrella potential) during the simulation. The PIMD method was chosen to simulate 

the proton transfer system in this study. In this method, the primitive representation of the 

discretized path integral action functional is used so that each quantum particle maps onto 

an isomorphic polymer "necklace" consisting of P quasiparticles, held together by harmonic 

springs [72,73]. The partition function in a notation specific to the proton transfer complex 

and the accompanying system of water molecules is given by 

/ r> \ 3(iVH+l)P/2   / \ 3iV0/2   P    (yvH \ No H$3       fe)    n(n<)^n^eXP(-w ,,9) 
where the proton (oxygen) coordinates of the water solvent as well as donor and acceptor 

waters are denoted by RH(Ro)- The proton (oxygen) mass is mH (m0). The coordinates of 

the transferring proton are denoted by r. The potential VP in Eq. (2.9) is given by 

27i2/32
tt?Jti 

+ ii;7(Rg)
1,..,Rg)

ArH;r«;Ro1,...,Ro,0), (2-10) 
^   2 = 1 



and consists of two terms. The first term contains the harmonic springs for the path inte- 

gral coordinates which are just the kinetic energy terms of Eq. (2.6). The second term is 

the many-body potential which includes all the intermolecular and intramolecular interac- 

tions and is evaluated at P discrete imaginary time slices. The partition function QP can 

be evaluated as an effective classical partition function by introducing fictitious momenta 

for the quasiparticles and oxygen atoms and using molecular dynamics [70]. The effective 

Hamiltonian is thus given by 

p   /Na 1 9       1 , ,o\       N° 1 
H' = E f E ^nVif + \rr%vfj + E ^ + VP (2.11) 

where m^ is the fictitious mass of the proton quasiparticles and m0 is the mass of the oxygen 

nuclei. The velocities of the proton quasiparticles and classical oxygen nuclei are given by 

V^ and V0, respectively, while that for the transferring proton quasiparticles are given by 

V
H- 

B. Proton Quantum Dynamics 

The calculation of quantum dynamical properties for many-body systems with many 

quantum degrees of freedom is problematical. A number of techniques for computing quan- 

tum dynamics are available such as semiclassical methods [74-80] or nonadiabatic dynamics 

[81-87]. However, none of these methods are particularly useful where a large fraction of the 

total nuclei must be quantized. A recently developed method known as "Centroid Molecular 

Dynamics" (CMD) [88-91] which is capable of dealing with such problems will be used in 

the present study to simulate the dynamics of the proton transfer in a quantized water sol- 

vent. The focus of the latter method is on the path centroid as a quasi-classical dynamical 

variable. The centroid of any proton is defined in Eq. (2.5) and in the discrete representation 

is written as 

Rs, = ^r*Ra(T»=?sRS''        (2:i2) 



where RH(T) is the Cartesian imaginary time paths of the protons and R[? are the Cartesian 

coordinates of the proton quasiparticles. [92] 

Associated with the centroid variable is the path integral centroid density, denoted by 

PC(R4
C
|,...,R[^ jr^Roj..".^^) in the present case. This equilibrium density, which 

bears the closest resemblance to the classical Boltzmann density, is formally calculated 

by fixing the centroid variables in Eq. (2.12) and then integrating over all configurations 

of the discretized quasiparticles, subject to a weighting by their effective Boltzmann-like 

configurational factor. While the centroid picture in equilibrium statistical mechanics is 

interesting in its own right [93-97], it was the discovery [88,89] and subsequent proof [90] of 

the classical-like dynamical properties of the centroid variable that have made the present 

study possible. 

The basic notion of CMD is that the position or velocity correlation function for quan- 

tum particles in a many-body system can be approximately related to a centroid position 

or velocity correlation function obtained by running classical-like trajectories on the effec- 

tive quantum centroid potential [88,96,89-91,97]. The centroid trajectories, as well as the 

trajectories of any classical degrees of freedom such as the oxygens, are generated by the 

classical-like MD equations 

mH-Rkc)(*)=Fg)(RiI
c),Ro)l (2-13) 

and 

m0-Ro(t) = Fg)(Rli
c),Ro)) (2-14) 

where the terms m0 and mH are vectors with components m0 and mH-   The effective 

centroid potential V^ is formally defined as 

V^(Rä?,Ro) = -kBT\n [pe (R^Ro)] • (2-15) 

The centroid density in the discrete representation is simply given by 

Pc (Rj?, Ro) =/■••/ ft dB$6 (Rj? - R°H) exp {-ßVP} . (2.16) 

10 



The centroid forces (F^}) on the protonic degrees of freedom in the discretized representation 

are given by 

(c) =    !■■■! I&i dR$6 (4C) ~ K) V'E exp {-ßVP} ' 

/-/nf=idRg)5(R4e)-Rä)exp{-)0Vi>}     ' 

where, from the cyclic invariance of the trace, 

V'H = ^EVRWy(Ri?,Ro). (2-18) 
r i=i      H 

Similarly, the forces for the classical degrees of freedom (F0) are given by 

/ • • • / I&i ^ (4C) - K) Vo exp {-/3V>} 
/■••/nL^^fR^-R^expi-^}      ' 

where 

V'O = ^EVRO^(RS
)
,RO). (2.20) 

The CMD method includes the effects of quantum zero-point energy and tunneling in 

molecular dynamics simulations directly and efficiently. While the method is approximate, 

the supporting results are quite compelling. For example, CMD has proven to be very 

accurate in several simulations [88,96,89-91,98] and it has been justified through a direct 

mathematical analysis [90], as well as from a variational perspective [88,96]. Furthermore, 

when barriers are encountered by the centroid trajectories, the insights from the earlier PI- 

QTST [59-62] confirm that the trajectories will overcome such barriers with the accurate 

quantum probability. 

III. MODEL PARAMETERIZATION 

A.   H5O2" dimer parameterization 

An important issue, of course, is the way in which to model the interactions of a hydro- 

nium with a given water molecule in the first solvation shell. To this end, the ground state 

electronic surface on which the proton transfers between two water molecules was described 

11 



using the EVB method [53,54]. In this method, two distinct diabatic electronic states are 

used (cf. Fig. 3) in which the proton is bound to one water molecule in the first state (Vn) 

and to the other water molecule in the second state (V22). Empirical potentials were used 

for the stable hydronium states, while information from explicit electronic structure calcu- 

lations was used to determine the off-diagonal matrix elements which allow the transitions 

between the diabatic valence bond states. 

To be more specific, the two valence bond states interact through an off-diagonal matrix 

element Vn which can be parameterized as a function of a subset of the nuclear coordinates. 

The adiabatic ground state potential energy function (Vad) for the system nuclei of this 

simple dimer is found by diagonalizing the 2x2 EVB matrix at each configuration, i.e., 

1 ,..      ., ,     1 
Vad = 

l- (Vn + V22) - -y/(Vn - V22f +.4V& (3-1) 

In this expression, the empirical potential for a given diabatic state i is written as 

v _ VE3O+ , yH2o , y . (3.2) 
vn ~  vintra    + vintra ^ vP°-ir \       I 

where Vpair is the intermolecular interaction between the water molecule and hydronium 

ion and v£&° (V*fa
+) is the intramolecular potential of the water (hydronium). The in- 

tramolecular potential for the hydronium was composed of the three harmonic OH bonds 

(r0Hi) and three HOH angle-bend (ft) terms given by, 

V£g? = £ kau {TOH, - rof + ke (ft - 60)
2 . (3.3) 

The equilibrium bond length (r0), bond angle (0O), and force constants {kOH and ke) were 

chosen to reproduce the four distinct vibrational frequencies of the hydronium ion. The two 

low frequency bend modes v± and v2 of the model were adjusted to reproduce the aqueous 

phase values of 1730 cm"1 and 1200 cm"1 [27]. The two high frequency symmetric (ux) and 

asymmetric (u3) stretches were adjusted to match the experimental gas phase values of 3650 

cm-1 and 3730 cm-1 [99] since these are more decoupled from the condensed phase effects. 

The resulting normal modes, as well as the experimental gas phase vibrational frequencies 

are listed in Table I. The parameters for the dimer model are given in Table II. 

12 



The intramolecular potential for the "acceptor" water molecule was the harmonic pa- 

rameterization of Kutchiso and Morino [100] which is given by [101] 

Vifa = YSPIDW (boH, ~ b0Heq)
2 + ^ {bHH - bHH«2 

2 

+ C (boHi + b0H2 - ^b0Heq) [bHH - bHHe 

+ d (boHi - boHeq) (boH2 - boHeq), (3-4) 

where b12 in the bond length between atoms 1 and 2. The equilibrium bond lengths are given 

in Table II. The intermodular interactions between the water molecule and the hydronium 

ion were taken to be pairwise Lennard-Jones (LJ) and Coulomb interactions between the 

various ionic sites. These interactions may be written as 

Ypair       ^c 

\RooJ        \RooJ 

where e and a are the usual LJ parameters and qm {qn) are the partial charges on the mth 

(nth) atom of the hydronium (water). The LJ interactions are only between the oxygen 

atoms. The partial charges were taken from the Mulliken charge population analysis in the 

gas phase density functional electronic structure calculation of Wei and Salahub [102] for the 

H5Oj complex. The partial charges, as well as the LJ parameters, are listed in Table III. 

As stated previously, the barrier in H50^ is low to nonexistent in the gas phase, de- 

pending on the 0-0 distance. The off-diagonal term which couples the diabatic states was 

parameterized to, in part, reproduce this barrier. The parametric form for Vu was chosen 

to be given by 

V12 = Vf*2 exp «oo (Roo — Roo (3.6) 

where V?2 is 65.89 kcal mol-1, a0o is 8 A~2 and R0
oo is 2.6 Ä. This parameterization yields 

a Vad in Eq. (3.1) that reproduces reasonably well the gas phase ab initio potential energy 

surface of Tortonda, et al. [36]. The potential surface of the latter study was generated by 

calculating the ab initio potential energy at constrained OO and OH distances while allowing 

for relaxation of all the other coordinates of the complex to their potential energy minimum. 

13 



The analogous surface was generated for the empirical potential energy function in Eq. (3.1) 

through a MC annealing calculation while constraining the same coordinates. The resulting 

potential surface is shown in Figure 4. The relative separation of the minima and height of 

the transition state are in good agreement with results of the electronic structure calculation. 

The height of the barrier is approximately 0.35 kcal mol-1 which compares well with the 

barrier of 0.3 kcal mole-1 calculated by Tortonda, et al. [36], though the equilibrium 0-0 

separation is somewhat larger in agreement with the ab initio MD result of Tuckerman, et 

al. [45] 

B. Solvent- H50^ Complex Interactions 

The usual approach in the EVB method is to add the complex-solvent interactions 

directly to each diabatic state Vn and V22 in Eq. (3.2). The potential for the entire solvent 

+ solute system is then found by diagonalizing the 2x2 diabatic matrix. An alternative 

approach is taken here. The gas phase adiabatic surface of Eq. 3.1 is assumed to be a 

good description of the intramolecular degrees of freedom of the complex and relatively 

unaffected by the solvent. Hence the adiabatic state of the solute is a function of the solute 

coordinates alone and does not depend on the solvent. The total potential energy including 

the solvent-solvent and solvent-complex interactions is thereby written as 

V = Vad + Vss (RH, RO) + Vsc (RH, RO, r), (3.7) 

where VSs contains the solvent-solvent interactions as well as the intramolecular potential 

energy of the solvent molecules. The term Vsc is the potential energy of the solvent-complex 

coupling. For the water solvent, the SPC water model [103] with the intramolecular harmonic 

parameterization of Kutchiso and Morino [100,101] was used [cf. Eq. (3.4)]. The equilibrium 

and dynamical properties of the quantized SPC/F water model will be fully explored in a 

future publication [104]. 

As the excess proton transfers between two molecular water hosts, there is considerable 

redistribution of charge as the net unit positive charge shifts its distribution over the donor 
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hydronium to the acceptor water. In order to mimic this charge redistribution, the electro- 

static atomic site charges of the complex were parameterized as functions of the reaction 

coordinate, the asymmetric stretch of the transferring proton [cf. Eq. (2.4)]. To this end, the 

ab initio study of Wei and Salahub [102] was used for parameterizing the partial charges of 

the H50^ complex with which the solvent interacts. In the latter study, a Mulliken charge 

population analysis was carried out for all the atoms of the H50^ complex and charges 

were calculated at different positions along the proton transfer reaction coordinate. The 

dependence of these charges on the reaction coordinate was thus reproduced in the empiri- 

cal model. The following equations were used to reproduce the charge variation. Using the 

atomic site labeling in Fig. 2, the partial charges for the protons of the complex were given 

by 

eHl = e%°+f (qasym) + eH
2° [1 - / (w*)], (3-8) 

eH2 = e%°+f (qasym) + eT [1 - / (w,)], (3-9) 

eH3 = 9 (qasym) , (3'10) 

eH4 = e%°f (qasym) + e?s0+ [1 - / (w0], (3-H) 

eH5 = ef°f (qasym) + e%°+ [1 - f (qasym)} ■ (3-12) 

The Coulomb charges of the oxygens were given by 

e0l = eg3°+/ (qasym) + eo2° [ W (Qasym)} + ^ {^t ~ 9 (qasym)} , (3-13) 

e02 = e%°f (qasym) + eg3°+ [1 - / (qaSym)\ + ^ [em ~ 9 (qasym)} ■ (3-14) 

The two charge switching functions / (qasym) and g (qasym) were given by 

/ (qasym) = r i1 ~ tanÜ (Qasym/Qsw)] , (3-15) 

and 

9 [qasym)     '      ^swQasym   '   Qmin' *-   '      ' 
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The parameters used in the above equations are given in Table IV. The above empiri- 

cal equations and ab initio charges of Wei and Salahub are plotted as a function of the 

asymmetric stretch coordinate in Fig. 5. 

C. Simulation Details 

The discretized partition function QP in Eq. (2.9) converges rigorously to the quantum 

limit as P -> oo. However, in practice a finite value of P is used so that the thermodynamic 

properties of interest are sufficiently converged to their quantum value. In the present case, a 

MC study was performed to select a suitable value of P [104,105]. This study followed along 

the lines of one suggested by Kuharski and Rossky [106]: It consisted of two solvent water 

molecules which interacted using the harmonic SPC/F potential (described in Sec. Ill B) 

and an additional quadratic potential between their centers of mass. This potential had a 

minimum at 2.85 Ä and a frequency u = 26 ps~\ creating an environment similar to the 

bulk solvent and typical of water librational motion. A total of 106 trial MC moves were 

carried out and a number of different properties were examined as a function of P including 

radial distribution functions and the average intramolecular energy. The value P = 25 was 

found to yield sufficient convergence for these properties. 

The fictitious mass m*R for the PIMD algorithm based on Eq. (2.11) should be chosen 

to be as small as possible in order to effect rapid sampling. However, if it is too small, 

ergodicity problems will occur and/or numerical integration of the equations of motion will 

be difficult due to the small time step necessary to integrate the high frequency motion of the 

proton quasiparticles. As a result, the fictitious mass was chosen by a normal mode analysis 

of a single quantized water molecule with the harmonic intramolecular SPC/F potential and 

P = 25. The mass m*H was set to 200 au so that the highest frequency mode was below 6000 

cm-1. 

The Velocity Verlet MD [107] method with an implicit iterative algorithm described by 

Tuckerman, et al. [108,109] was used to integrate the PIMD Hamiltonian. Two Nose-Hoover 
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oscillators [110-112] were used for equilibration, one "attached" to the oxygens, the other 

to the hydrogen quasiparticles. It was verified that these two Nose oscillators were sufficient 

to overcome ergodicity problems associated with PIMD calculations [113]. The Nose masses 

(Qvo for the oxygens and Qm for the protons) were chosen to be [114] 

n    - 3N°"3     ' (3.17a) 
UyjatP 

O    _ 3PN}i * (3.17b) 
^VH        , ,2     a y 

^hydP 

where tuwat and uhyd are the characteristic frequencies of the system and were set to uw=680 

cm"1 and 0^=3600 cm-1 if the protons were treated classically or uhyd = ymnP/m^h ß2 

if the protons were treated quantum mechanically. The time step used for both the classical 

and PIMD simulations was 0.5 fs. 

D. Centroid Molecular Dynamics Algorithm 

A number of algorithms for solving the CMD equations [cf. Eqs. (2.13)-(2.17)] have been 

developed [91]. This task is not entirely trivial since the centroid potential V
(C)

(R-H ,RO) 

is actually a quantum potential of mean force, requiring path integral averaging to find the 

centroid force at each time step [cf. Eqs. (2.16)-(2.17)]. In the approach taken here the 

"natural" CMD time step was broken into NMD smaller time steps. At each of these small 

time steps a PIMD calculation was run to obtain the centroid force. The centroid forces 

are the forces felt by the centroids of the quantum degrees of freedom and the positions 

of the classical degrees of freedom. Hence, the PIMD calculation was ran with constraints 

on the Cartesian positions of the centroids [115] without moving the classical degrees of 

freedom. The forces were averaged over a reasonable number of PIMD time steps followed 

by a MD move of the proton centroids and the classical oxygen coordinates. This "on the 

fly" algorithm provides a feasible alternative to a brute force approach for obtaining the 

centroid force. The CMD time step used was 0.05 fs and the PIMD time step used was 0.5 

fs. The centroid force was averaged over five PIMD time steps (e.g., five PIMD timesteps 
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were used for every CMD time step). The simulations were run at 300 K with 125 molecules 

(123 water molecules and the H5Oj complex) at the density of water (1.00 g/mL). The 

interactions were tapered at half the box length with a smooth spherical cutoff. 

IV. RESULTS 

A. Radial Distribution Functions 

The microscopic structure of the solvent around the H50^ complex was first analyzed 

using radial distribution functions. In Fig. 6, the radial distribution of oxygens about each 

oxygen of the complex shows a sharp maximum at 2.5 Ä. The positioning of the peak is in 

agreement with the experimental thermal neutron and X-ray scattering studies of Triolo, et 

al. [28]. If one regards the H30
+ as a chemically distinct species, the maximum corresponds 

to the three water molecules that hydrogen bond to the three hydrogens of the H30
+ in the 

E9Ot complex. The peak is moved in and sharper than the oxygen-oxygen peak of liquid 

water which is shown for comparison. However, the peak is split in this case because one 

of the three oxygens is not a water oxygen but a companion oxygen in the H502 complex 

which is somewhat closer than the oxygens of the two water molecules that hydrogen bond 

to a given oxygen in the E5Ot complex. This splitting was also seen in ab initio simulations 

of Tuckerman, et al. [31]. In the latter simulations, two different radial distributions were 

calculated. In the first simulation no splitting was observed which corresponded to the 

symmetrical H90| structure in water. In the second distribution function the peak was 

split, indicating that one of the water molecules was moved in and the H50^ complex was 

present. Since the distribution functions are averaged over very long time intervals in the 

present study the first peak is split as the two structures interchange. It should be noted 

that the charge switching parameterization of the empirical model allows the acceptor water 

to have a charge distribution which is almost the same as that of SPC/F water when the 

transferring proton is close to the donor hydronium. In addition, the model is parameterized 



in such a way that the charge distribution of the donor hydronium is symmetrical over the 

three atoms of the H30
+ . These features allow for the dynamical interchange of the 

E9Ot structure and the H50£ complex. Both of these were in fact observed in the present 

simulations using computer visualization packages. The splitting is enhanced in the quantum 

case because the average oxygen-oxygen distance is greater for the two water molecules that 

hydrogen bond to the oxygen of the complex. This is due to the fact the average OH bond 

length of the four hydrogens that do not participate in proton transfer in the H50^ complex 

is greater in the quantum case. The OH bond length is 1.048 ± 0.002 Ä in the classical and 

1.068 ± 0.001 Ä in the quantum case. The average OO distance of the oxygens in the 

H50^ complex is 2.4862 ± 0.0007 in the classical and 2.4860 ± 0.0006 in the quantum cases. 

Both numbers are in good agreement with the experimentally observed distance of 2.5 Ä [28]. 

The coordination number at the first minimum of the oxygen-oxygen radial distribution is 

3.3, while the experimentally determined coordination number is four [28]. It should be 

noted, however, that the coordination number for the oxygen in the H30
+ at the minimum 

of the oxygen-oxygen radial distribution for liquid water (~ 3.3 Ä) is four. Therefore, the 

coordination number of the H30
+ when evaluated at the first solvation shell radius of liquid 

water is more in accord with experiment. 

Further insight into the microscopic structure of the solvent can be gained by examining 

the distribution of hydrogens with respect to the oxygens of the complex (cf. Fig. 7). The 

transferring proton has been included in this distribution function, but the four hydrogens 

covalently bound to the complex have not. In the classical treatment of the protons, the 

peak due to the transferring proton is distributed between 1.0 and 1.5 Ä and is split due 

to the fact that there is a small effective barrier (double well potential) along the proton 

transfer coordinate. In the quantum case, the peak is not split due to the fact that the 

proton tunnels and has a large zero point energy above the classical gas phase barrier (cf. 

the following section). The peak at 1.9 Ä present in the water OH distribution function 

is not present in the hydronium case, indicating that the protons of the waters in the first 

solvation shell are oriented outwards with respect to the complex. The classical distribution 
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function calculated here is quantitatively the same as that found by Tuckerman, et al. [31] 

using ab initio molecular dynamics, although the statistical error is much greater in the 

ab initio simulation. This confirms that the parameterization of the empirical model is 

quite successful when compared with more sophisticated, but much more costly, dynamical 

electronic structure methods. The present result also indicates that the quantum effects for 

the transferring proton are significant, qualitatively changing the distribution function. 

The distribution function of the transferring proton with the protons of the complex and 

protons of the nearby water molecules shows a large maximum corresponding to the four 

protons of the complex (cf. Fig. 8). Again, the peak is split in the classical case due to 

the barrier along the proton transfer coordinate. The distribution shows enhanced ordering 

of the solvent at longer distances due to the overall charge of the complex which aligns 

the solvent water molecules. All of the radial distribution functions discussed above were 

averaged over 600 ps. 

B. Asymmetric Stretch Trajectories 

Representative trajectories of the proton transfer asymmetric stretch coordinate are 

shown in Fig. 9, wher the classical (Fig. 9a) and centroid (Fig. 9b) trajectories of the 

asymmetric stretch coordinate are plotted as functions of time. The high frequency oscilla- 

tions of the quantum centroid trajectory are of larger amplitude than those of the classical 

variable. In addition, the classical transfer coordinate sometimes resides on either side of 

the classical transition state {qasym = 0) whereas the centroid trajectory samples the entire 

range of qasym in smooth fashion, indicating a lower or non-existent activation free energy 

along the proton transfer coordinate in the quantum case. In the classical case, the value of 

qasym corresponds to the case of the H9Oj structure about sixty percent of the time and to 

the E5Ot complex, in which the proton resonates between water molecules, around forty 

percent of the time. This classical result is again in qualitative agreement with the ab initio 

MD results of Tuckerman, et al. [31] for classical nuclear dynamics, but the effects of nuclear 
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quantization are again seen to be large in the present study. 

C. Quantum Dynamics of Proton Migration 

The activation energy of proton transfer in the H50^ complex was calculated in both 

the classical TST (i.e. all the protons in the system were classical) and the quantum PI- 

QTST. As can be seen from Fig. 10, in the classical limit the activation energy is about 

0.51 kcal mor1, which is approximately 0.9 kBT, and arises from the solvent orientational 

polarization reorganization. There is no centroid activation free energy in the quantum case. 

The dependence of the activation free energy on system size was also checked; curves for 

both 123 and 510 water molecules are shown in Fig. 10. Proton "sharing" between two water 

molecules in the quantized H50£ complex is clearly an activationless or nearly activationless 

process and certainly not the rate limiting step to proton migration in water. This result 

could have been predicted from the character of the centroid trajectory in Fig. 10b. 

Interestingly, the activation energy of the rate limiting step for proton transfer in water 

has been measured in 170 experiments by Luz and Meiboom [8] to be approximately 2.4 

kcal mol-1. Furthermore, the mean residence time of a proton with a given water molecule 

is around 1.5 ps [8,9,13]. The inverse of this number is the rate of proton transfer and is 

0.69 ps-1 [8]. The rate is clearly much smaller than the rate of proton transfer through 

the strong hydrogen bond in the H50^" complex as evidenced by Fig. 9b. Extended proton 

migration must therefore occur in a concerted fashion, perhaps requiring both the correct 

solvent fluctuations in the second solvation shell of the H50£ complex and an inward 

fluctuation of the oxygen-oxygen distance between the complex and another water molecule 

(i.e., the coordinate Rc in Fig. 2). The inward fluctuation of this oxygen-oxygen distance 

creates a "special" bond wherein the resonating proton "flips" its identity (i.e., from proton 

three to proton four in Fig. 2), thus forming a new H5Oj" complex which includes the 

inward fluctuating water molecule. It is this switching of the "special" resonating proton 

hydrogen bond between pairs of oxygen atoms that could give rise to the Grötthus-type 
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proton migration mechanism. [45] 

In order to gain better insight into this process, the rate of inward 00 fluctuations of the 

four waters closest to the H50j complex was calculated. This rate was also correlated with 

the probability that the four water molecules were sufficiently hydrogen bonded to other 

water molecules. Both conditions are necessary for a flip of the "special" bond to occur 

and thus for extended proton transfer to occur. In order to define the energy criterion of a 

hydrogen bond between a water in the first solvation shell of the H5O2" complex and the 

nearby solvent molecules, the distribution of pairwise energies was calculated for the four 

waters closest to the H50^" complex with the other water molecules of the solvent. The 

classical and quantum distributions are shown in Fig. 11. The hump on the shoulder of the 

distribution is due to hydrogen bonding. 

The rate of inward oxygen-oxygen fluctuations was calculated by first "tagging" the 

four water molecules closest to the oxygen-oxygen complex. A dividing surface was placed 

at a distance Rc and the rate at which the oxygen-oxygen distance crossed the dividing 

surface was measured. A crossing of the dividing of the surface was only counted if the 

water molecule had two pairwise interactions with the solvent molecules that were below 

-4.0 kcal mol-1. This definition of a hydrogen bond is reasonable given the distribution 

in Fig. 11 and that the average energy of a hydrogen bond for classical rigid classical SPC 

water [116] is -4.34 kcal mole-1. The resulting rate should represent an upper bound on the 

rate of flipping of the "special" bond and hence the rate of proton transfer. The resulting 

rates are plotted as a function of the oxygen-oxygen distance Rc in Figure 12. As can be 

seen from that figure, the overall rate is significantly lower in the quantum case (which was 

calculated using CMD). The quantum rate in the range of Rc = 2.5 - 2.6 Ä is in good 

agreement with the experimentally measured room temperature rate of the proton hop of 

0.69 ps"1 [8]. This distance range is considered to be typical of the oxygen-oxygen distances 

at which the "flip" of the special complex H-bond could take place. The classical rate in 

the same range of Rc is approximately 10-20 ps_1. The quantum rate calculation shown 

in Figure 12 was averaged over 20 ps of a CMD simulation, while the classical rate was 
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averaged over 40 ps. Clearly, the quantum effects on the nuclear motion are significant in 

this case. 

D. Zundel Polarization and the Continuum 

Strong hydrogen bonds are characterized by low to nonexistent barriers for proton trans- 

fer, enthalpies of 9-15 kcal mol-1, and short equilibrium distances (e.g. 0-0 distances less 

then 2.6 Ä). The spectral signature of strong H-bonds in solution (and acid crystals) is a 

strong absorption peaked at 1500-2000 cm"1 and extending over a range of 1000-1500 cm-1. 

This absorption is known as the continuum and is observed in many liquid systems (not just 

water) in which symmetric H-bonds of the type BH+ ••■Bor (AH- • -A)" are present. [29] 

This phenomenon is a protonic rather than an electronic polarization effect. The polarization 

of a proton in a strong hydrogen has been estimated to be one to two orders of magnitude 

larger than electronic polarizabilities of molecules [38-40]. Two mechanisms are thought to 

be responsible for the continuum: 

1. Zundel polarization which is also called the direct mechanism. Strong electrostatic 

coupling of the solvent gives rise to deformations of the proton transfer potential. 

There is a large distribution of fields which gives rise to a continuity of energy level 

differences. In addition, there is a large distribution of equilibrium H bond lengths, 

causing additional "smearing" of the continuum 

2. The indirect mechanism, which is the coupling of the OH vibration to the low frequency 

anharmonic 0-0 vibration of the proton transfer complex (or whichever two atoms 

are sharing the proton in a strong hydrogen bond [117-121]). 

A discussion of the effects of a static external field on the absorption spectrum of the 

H5Ot complex is given by Janoschek [122]. One of the conclusions of this work and re- 

lated treatises [38-40] is that the electric field produced by the surrounding polar solvent is 

sufficient to lead to considerable broadening of the IR absorption spectrum in strongly hy- 
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drogen bonded (i.e. low barrier) systems. A rigorous study to obtain the infrared absorption 

spectrum would require finding the line shape function I(u) which is given by [123] 

1(0}) = f" dtewt (MO)Mt))    . (41) 
J—oo 

where (/z(0)/i(£)) is the macroscopic quantum dipole autocorrelation function. Since only a 

qualitative comparison is made here, the quantuni velocity autocorrelation function of the 

O1H3 bond is used instead, i.e., 

Iv(u) = r dte™ {VOIH3(0)VOIHM ■ (42) 
J—00 

Since this vibrational mode is directly involved in the transfer of the proton, its power 

spectrum should contain most of the qualitative features of the continuum IR spectrum of a 

strong acid dissolved in water. Within the framework of the theory of CMD, the quantum 

correlation function is obtained from the centroid correlation function (which is calculated 

from computer simulation) using the following expression [89,90] 

Iv(u) = (hßu/2) [coth (hßu/2) + 1] 4c)(w), (4-3) 

where ifi (u) is the Fourier transform of the centroid velocity correlation function. The 

power spectrum is plotted in Figure 13 and was obtained by averaging over four ps of a 

CMD run. The strong absorption between 1000 and 2500 cm-1 is typical of strong acids in 

solution. Some residual absorption at 3600 cm'1 is present from the OH covalent stretch. As 

stated earlier the absorption is thought to occur via two mechanisms; the direct mechanism 

due to solvent deformations of the proton potential giving rise to a continuum of transition 

and the indirect mechanism due to coupling of the OH stretch to the low frequency 0-0 

vibration. Differentiation between the two mechanisms could be made by constraining the 

oxygen-oxygen distance in the complex, thus eliminating the contribution of the indirect 

mechanism. Future work will focus on this. The spectrum presented here is also in good 

agreement with simulations of condensed phase proton transfer in a model system by Borgis 

et al. [124]. 
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V. CONCLUDING REMARKS 

In this paper, structural and dynamical studies of an excess proton in water have been 

carried out. The coordination number of the H30
+ species was found to be in good agree- 

ment with experiment and the classical radial distribution functions of the H50^ species are 

in accord with those found from ab initio MD methods. Importantly, the nuclear quantum 

effects are found to be large, accordingly the proton transfer along the strong hydrogen bond 

in the H5Oj complex is found to be a quantum activationless process. The strong hydrogen 

bond in the complex is considered to be a "special" bond [31] characterized by a smaller 

than normal oxygen-oxygen distance (« 2.5 Ä) which can lead to the rapid interchange of 

the chemical and hydrogen bonds as the proton moves back and forth. As a result of our 

dynamical study of the conditions necessary for this to occur, the activation energy and rate 

constant measured by Luz and Meiboom [8] would seem to correspond to the flipping of the 

special bond to another pair of oxygens. The flipping of the special bond corresponds to the 

simplest example of the Grötthus mechanism of proton transfer, and it depends on the dy- 

namics of the water molecules in the second solvation shell, of the proton transfer complex, 

as well as the oxygen-oxygen distance fluctuations of water molecules that hydrogen bond 

to the complex. Analysis of the quantum dynamics of the water molecules which hydrogen 

bond to the H50^" complex show that the rate of inward oxygen-oxygen fluctuations of 

these molecules, when correlated with solvent hydrogen bonding from water molecules in 

the second solvation shell, is in agreement with the experimentally measured rate of proton 

transfer. The nuclear quantum effects in this process are significant. 

Finally, the quantum power spectrum of the proton transfer mode of the H5O2" complex 

in water was found to be in qualitative agreement with the the IR spectrum of strong 

hydrogen bonding systems, showing a characteristic broad absorption. Future work will 

be devoted to exploration of whether the direct or indirect mechanism predominates in 

the calculated spectrum, as well as to actual quantum simulations of the extended proton 

migration process. 
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TABLES 

TABLE I. Experimental [27,99] and model [125] vibrational frequencies of the hydronium ion 

in cm""1. 

Expt. 1200 1700 3645 3730 

Model 1101 1704 3610 3725 
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TABLE II. Intramolecular water and hydronium parameters.  

Parameter Value ^___ 

jt 546 kcal mol-1 A-2 

0.98 A 

44.55 kcal mol-1 radian-2 
kg 

Q 110 degrees 

n 2.566 A 

D 0.708 mdyn A 

bOHeq 
L0 Ä 

HÖH angle 109.47 degrees 

b 2.283 mdyn A-1 

c -1.469 mdyn A-1. 

d 0.776 mdyn A-1 
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TABLE III. Intermolecular potential parameters for the hydronium and water. 

0-0 H20 H30+ 

e/kB (K)       o (Ä)       qo  (e) 9H (e)        qo (e)       9H (e) 

78.22 3.165       -0.83826      0.45212      -0.641      0.52518 
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TABLE IV. Charge switching parameters used in Eg. (3.12)-(3.16). 

Parameter 

-H3O+ 

0H20 
-O 

H3O+ 

=H20 
-H 

em 

QH- 

Ots 

Qsw 

Value 

-0.64151 e 

-0.83826 e 

0.52804 e 

0.45212 e 

0.51945 e 

0.58575 e 

10.8396 Ä~4 e 

0.3175 A 
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FIGURES 

FIG. 1. Illustration of the Grötthus mechanism. Charge transfer takes place via an interchange 

of chemical and hydrogen bonds. 

FIG. 2. Schematic of the proton transfer reaction coordinate and atoms of the proton transfer 

complex. The transferring proton is labeled H3 and n (r2) is the distance between H3 and Oi 

(02). Also illustrated are four water molecules adjacent to the complex and the critical second 

0-0 {Rc) distance (cf. Sec. IV C). 

FIG. 3. Diabatic states of the HsO^ complex. 

FIG. 4. Gas phase empirical potential energy surface of the HsO^ complex as a function of 

the Oi-02 distance and O1-H3 distance. The contours are in 1.0 kcal mol-1 increments. 

FIG. 5. Plot of the ab initio gas phase charges of atoms of the H50^ complex and empirical 

charge switching functions used to reproduce the ab initio results. Charges are plotted as a function 

of the proton transfer reaction coordinate. The charge on H2 is the same as Hi. Charges on H4 

and H5 are the mirror image of Hi, reflected about qasym = 0. Similarly, the charge on 02 is the 

mirror image of Oi- 

FIG. 6. Radial distributions of oxygen atoms of the HsOj complex with respect to the solvent 

and complex oxygen atoms. Radial distributions are shown for the quantum (solid) and classical 

(dashed line) cases. The classical oxygen-oxygen distribution function (dot-dashed) of SPC/F 

water is also shown for comparison. 

FIG. 7. Radial distribution of water hydrogens as well as the transferring proton with respect 

to the oxygen atoms of the complex (quantum-solid, classical-dashed). The classical SPC/F oxy- 

gen-hydrogen distribution function of liquid water is also shown for comparison. 
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FIG. 8. Radial distribution of water hydrogens and covalently bound complex hydrogens with 

respect to the transferring proton of the complex. The quantum distribution is the solid line while 

the classical the dashed line. The classical hydrogen-hydrogen distribution function of liquid water 

(SPC/F) is also shown for comparison. 

FIG. 9. Trajectory of the transferring proton along the asymmetric stretch coordinate in the 

(9a) classical and (9b) quantum centroid cases. 

FIG. 10. Activation free energy curves as a function of the proton asymmetric stretch coordi- 

nate. The classical activation energy curve is shown in 10a, while the quantum activation energy 

curve is shown in 10b. Both free energy curves have been calculated with system sizes of 510 and 

123 water molecules. 

FIG. 11. Pair energy distribution of the four molecules closest to the H5O2" complex. The 

dashed line is for the classical system and the solid line is for the quantum system. 

FIG. 12. The rate of oxygen-oxygen fluctuations correlated simultaneously with the hydrogen 

bonding of a water molecule adjacent to the complex (cf Sec. IV C). The quantum rate is shown 

by the solid line, while the classical rate is given by the dash-dot line. 

FIG. 13. Power spectrum of the quantum velocity auto correlation function of the O1H3 bond 

(solid line). The broad absorption from 1000 cm"1 to 2500 cm"1 is typical of strong aqueous acids. 

Shown also is the power spectrum of one of the covalent OH bonds of the H50^" complex that 

does not participate in the proton transfer (dashed line). 
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